

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.09.07, the SlowMist security team received the Memeland team's security audit application for Memecoin,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

It's a contract to sell tokens and claim tokens.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Preemptive
Initialization

Race Conditions
Vulnerability

Suggestion Fixed

N2
Values not adjusted

after refund
Design Logic Audit Low Acknowledged

NO Title Category Level Status

N3
Ensure list is sorted

to prevent calculation
failures

Design Logic Audit Suggestion Fixed

N4 Missing event record
Malicious Event

Log Audit
Suggestion Fixed

N5 Risk of over-privilege
Authority Control
Vulnerability Audit

Medium Acknowledged

4 Code Overview

4.1 Contracts Description

https://github.com/9gag/memecoin-contract-audit

Audited commit:de9505723fcdf957f67eb11c207300c1a6b32796

Review commit:d496309fb5d2a4c3b1efc5ac7c847467e31799d6

The main network address of the contract is as follows:

MemecoinFiresaleV1

0xB9879cD06c904c2FDbc75d03534929b5E842F3a0

Implementation contract

0x8726e455769d5c58c4ad8453c0c4b7ae116f3113

MemecoinClaim

0xE6f3494E839F3D3Fb36c407eB35cd85D90Dc3704

Implementation contract

0x6fdF393AeC35Cac8125c2E022A0Ad05cCEBBa19B

MemecoinClaim

0xb1911D8FFcC2d8cA6c5EA4F4f18bE6ea675c1Ce7

Implementation contract

0xDC79D2c13Ec218049405836A74454952902eC42d

MemecoinClaim

0x517daba2695244ace417758f72d0Dfb8EfA0Ad59

Implementation contract

0x81804B4FEE3F22DB3cB38e714BFE5fb6E98ad316

MemecoinClaim

0x6f8F1266565d3A7DD05c30EBf64Faf509E4be61a

Implementation contract

0xDC9Aef21d9781B1C1fBf7B107715e23D500ef70C

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

MemecoinClaim

Function Name Visibility Mutability Modifiers

_authorizeUpgrade Internal
Can Modify

State
onlyUpgrader

<Constructor> Public
Can Modify

State
-

initialize External
Can Modify

State
initializer

claim External
Can Modify

State
nonReentrant

onlyValidClaimSetup

claimInNFTs External
Can Modify

State
nonReentrant

onlyValidClaimSetup

claimFromMulti External
Can Modify

State

nonReentrant
onlyValidClaimSetup

onlyMultiClaim

claimInNFTsFromMulti External
Can Modify

State

nonReentrant
onlyValidClaimSetup

onlyMultiClaim

_getRequester Private - -

_claim Internal
Can Modify

State
-

MemecoinClaim

_claimInNFTs Internal
Can Modify

State
-

_executeClaim Private
Can Modify

State
-

_executeClaimInNFTs Private
Can Modify

State
-

_verifyNFTClaim Private - onlyValidCollectionId

_verifyNFTRewardClaim Private - onlyValidCollectionId

_calculateClaimable Private - -

_calculateNFTClaimable Private - -

_calculateNFTRewardsClaima
ble

Private - -

_calculateRemainClaimable Private - -

_calculateUnlockedAmount Private - -

_calculateUnlockedAmountBy
DaysElapsed

Private - -

_calculateNFTUnlockedAmou
nt

Private - -

_toUint128 Private - -

setClaimables External
Can Modify

State
onlyOwner

setNFTClaimables External
Can Modify

State
onlyOwner

addNFTUnlockedBPAndSetU
nlockTs

External
Can Modify

State
onlyOwner

setUnclaimedNFTRewards External
Can Modify

State
onlyValidCollectionId onlyOwner

setRevealedCaptainzClaimabl
e

External
Can Modify

State
onlyOwner

depositClaimTokenAndStartCl
aim

External
Can Modify

State
onlyOwner

MemecoinClaim

withdrawClaimToken External
Can Modify

State
onlyOwner onlyClaimNotOpen

withdrawUnclaimedNFTRewa
rds

External
Can Modify

State
onlyOwner

setClaimSchedules External
Can Modify

State
onlyOwner onlyClaimNotOpen

setClaimActive External
Can Modify

State
onlyOwner

setClaimStartDate External
Can Modify

State
onlyOwner

setMultiClaimAddress External
Can Modify

State
onlyOwner

setUpgrader External
Can Modify

State
onlyOwner

getClaimInfo Public - onlyValidClaimSetup

getClaimInfoByNFT Public -
onlyValidClaimSetup
onlyValidCollectionId

getRewardsClaimInfoByNFT Public -
onlyValidClaimSetup
onlyValidCollectionId

getTotalClaimableAmountsBy
NFTs

Public - -

getUserClaimDataByCollectio
ns

Public - -

getClaimSchedule Public - -

MemecoinMultiClaim

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

multiClaim External Can Modify State -

_getRequester Private - -

MemecoinFiresaleV1

Function Name Visibility Mutability Modifiers

_authorizeUpgrade Internal Can Modify State onlyUpgrader

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

reserve External Payable nonReentrant onlyFiresaleOpening

refund External Can Modify State nonReentrant onlyFiresaleFinished

_getRequester Private - -

_checkValidity Private - -

_withdraw Private Can Modify State -

setFiresaleState External Can Modify State onlyOwner

setRefundStartDate External Can Modify State onlyOwner

setSigner External Can Modify State onlyOwner

setUpgrader External Can Modify State onlyOwner

withdrawSales Public Can Modify State onlyOwner onlyFiresaleFinished

withdrawRefund Public Can Modify State onlyOwner onlyFiresaleFinished

getFiresaleUsersCount External - -

getFiresaleUsers External - -

Memecoin

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC20 ERC20Permit

permit Public Can Modify State -

setTokenPool External Can Modify State onlyOwner

4.3 Vulnerability Summary

[N1] [Suggestion] Preemptive Initialization

Category: Race Conditions Vulnerability

Content

By calling the initialize functions to initialize the contracts, there is a potential issue that malicious attackers

preemptively call the initialize function to initialize.

function initialize(address _mvpAddress, address _captainzAddress, address

_potatozAddress) external initializer {

 ReentrancyGuardUpgradeable.__ReentrancyGuard_init_unchained();

 OwnableUpgradeable.__Ownable_init_unchained();

 UUPSUpgradeable.__UUPSUpgradeable_init();

 upgrader = _msgSender();

 dc = IDelegationRegistry(0x00000000000076A84feF008CDAbe6409d2FE638B);

 setCollectionAddresses(_mvpAddress, _captainzAddress, _potatozAddress);

}

function initialize(address _signer, uint256 _unitPrice) public initializer {

 ReentrancyGuardUpgradeable.__ReentrancyGuard_init();

 OwnableUpgradeable.__Ownable_init();

 signer = _signer;

 unitPrice = _unitPrice;

 upgrader = _msgSender();

 dc = IDelegationRegistry(0x00000000000076A84feF008CDAbe6409d2FE638B);

}

Solution

It is suggested that the initialize operation can be called in the same transaction immediately after the contract is

created to avoid being maliciously called by the attacker.

Status

Fixed

contracts/claim/MemecoinClaimV1.sol

contracts/firesale/MemecoinFiresaleV1.sol

[N2] [Low] Values not adjusted after refund

Category: Design Logic Audit

Content

The values of usersTotalFiresales[requester] and firesaleTotal are not reduced accordingly after the

user is refunded, and the data is incorrect if the relevant usersTotalFiresales[requester] and

firesaleTotal values are subsequently used.

function refund(address _vault, uint32 _allocatedAmount, bytes calldata _signature)

 external

 nonReentrant

 onlyFiresaleFinished

{

 address requester = _getRequester(_vault);

 uint256 userTotalFiresale = usersTotalFiresales[requester];

 if (userTotalFiresale == 0) revert NoFiresaleRecord();

 // skip the sig validation & refundAvailable calculation if input is already >=

userTotalFiresale

 if (_allocatedAmount >= userTotalFiresale) revert NoRefundAvailable();

 if (usersRefunded[requester]) revert AlreadyRefunded();

 string memory action = string.concat("meme-firesale-refund-won_amount-",

Strings.toString(_allocatedAmount));

 if (!_checkValidity(requester, _signature, action)) revert InvalidSignature();

 usersRefunded[requester] = true;

 uint256 refundAvailable = (userTotalFiresale - _allocatedAmount) * unitPrice;

 _withdraw(requester, refundAvailable);

 emit UserRefunded(requester, _allocatedAmount);

}

Solution

Deduct the refunded portion of the amount.

Status

Acknowledged; Meets design expectations.

[N3] [Suggestion] Ensure list is sorted to prevent calculation failures

contracts/firesale/MemecoinFiresaleV1.sol

Category: Design Logic Audit

Content

Make sure the array in ClaimSchedule.lockUpBPs is from smallest to largest, otherwise

_calculateUnlockedAmountByDaysElapsed will fail.

function setClaimSchedules(ClaimType[] calldata _claimTypes, ClaimSchedule[] calldata

_claimSchedules)

 external

 onlyOwner

 onlyClaimNotOpen

{

uint256 len = _claimSchedules.length;

if (_claimTypes.length != len) revert MismatchedArrays();

for (uint256 i; i < len;) {

 claimScheduleOf[_claimTypes[i]] = _claimSchedules[i];

 unchecked {

 ++i;

 }

}

}

Solution

Inside the logic, make sure that the values in the list are from smallest to largest, and that they are reasonable values.

Status

Fixed

[N4] [Suggestion] Missing event record

Category: Malicious Event Log Audit

Content

Key Parameter Settings Unrecorded Events .

The following functions do not log events setFiresaleState , setFiresalePriceInfo , setSigner

, setUpgrader , withdrawSales .

contracts/claim/MemecoinClaimV1.sol

contracts/firesale/MemecoinFiresaleV1.sol

The following functions do not log events setClaimables , setNFTClaimables , setNFTRewardsClaimables ,

setClaimActive , setClaimStartDate , setClaimTokenAddress , setCollectionAddresses ,

setMultiClaimAddress , setUpgrader .

Solution

Recording events.

Status

Fixed

[N5] [Medium] Risk of over-privilege

Category: Authority Control Vulnerability Audit

Content

The owner can directly collect the token stored in the contract, if the owner's private key is leaked, it will result in the

loss of the project's assets.

 function withdrawClaimToken(uint256 _amount) external onlyOwner onlyClaimNotOpen

{

 address claimTokenAddress = address(claimToken);

 if (claimTokenAddress == address(0)) revert ClaimTokenZeroAddress();

 claimToken.safeTransfer(_msgSender(), _amount);

 }

The owner can withdraw the ETH sold through the contract by withdrawing the sales, which could result in a loss of

project funds if the owner's private key is compromised.

 function withdrawSales(uint256 _totalFiresaleItems) public onlyOwner

onlyFiresaleFinished {

 if (_totalFiresaleItems > firesaleTotal) revert WithdrawExceedTotalSales();

 uint256 sales = _totalFiresaleItems * unitPrice;

 uint256 available = sales - totalWithdrawnSales;

contracts/claim/MemecoinClaimV1.sol

contracts/claim/MemecoinMultiClaim.sol

contracts/firesale/MemecoinFiresaleV1.sol

 if (available == 0) revert NoNewSales();

 totalWithdrawnSales += available;

 _withdraw(_msgSender(), available);

 }

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-point risk.

But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up multiple

privileged roles to manage each privileged function separately. The authority involving user funds should be managed

by the community, and the EOA address can manage the authority involving emergency contract suspension. This

ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged; MemecoinFiresaleV1

0xB9879cD06c904c2FDbc75d03534929b5E842F3a0

owner

0x21e14f503b03f43EBc4B779261D787183a54eC4b

MemecoinClaim

0xE6f3494E839F3D3Fb36c407eB35cd85D90Dc3704

owner

0x21e14f503b03f43EBc4B779261D787183a54eC4b

MemecoinClaim

0xb1911D8FFcC2d8cA6c5EA4F4f18bE6ea675c1Ce7

owner

0x536eCe8Ba00dc1c2c0cc4D477456ce8CB5CecbC3

MemecoinClaim

0x517daba2695244ace417758f72d0Dfb8EfA0Ad59

owner

0x6aC2f83E7a631F353062426e72b350a581837ceA

MemecoinClaim

0x6f8F1266565d3A7DD05c30EBf64Faf509E4be61a

owner

0xb0B89afD0EB04a4BCBa0630A72B40b60387935f5

A timelock will be added to manage the contract.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002309130001 SlowMist Security Team 2023.09.07 - 2023.09.13 Low Risk

Summary conclusion: Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis

tool to audit the project, during the audit work we found 1 medium risk, 1 low risk, 3 suggestion vulnerabilities.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

